Precition Glass Molding: Validation Of An Fe Model For Thermo-Mechanical Simulation

In precision glass molding process, the required accuracy for the final size and shape of the molded lenses as well as the complexity of this technology calls for a numerical simulation. This paper addresses the development of an FE model for thermo-mechanical simulation of the precision glass molding process including heating, pressing, and cooling stages. Temperature-dependent viscoelastic and structural relaxation behaviour of the glass material are implemented through a FORTRAN material subroutine (UMAT) into the commercial FEM program ABAQUS, and the FE model is validated with a sandwich seal test. Subsequently, precision molding of several glass rings is performed at three different pressing temperatures, and the experimental deformation of the glass rings at the end of the molding is compared with the predicted ones from FE simulation. Furthermore, the transient and residual stress distribution inside the glass rings are calculated by the developed FE model, and the effects of some important process parameters such as interface friction and mold temperature on the FE results are assessed. The developed FE model can be employed to predict the deformation behaviour, final size/shape, and the residual stress state inside the glass lenses in a precision glass molding process.

Author
A Sarhadi Et Al
Origin
University Denmark
Journal Title
Int J Appl Glass Sci 5 3 2014 297-312
Sector
Special Glass
Class
S 4138

Request article (free for British Glass members)

Precition Glass Molding: Validation Of An Fe Model For Thermo-Mechanical Simulation
Int J Appl Glass Sci 5 3 2014 297-312
S 4138
Are you a member?
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
7 + 3 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.