Nanoparticles And Apparent Activation Energy Of Portland Cement

Although chemically inert nanosize mineral fillers have been shown to modify early cement hydration kinetics, with the effects dependent upon usage rate, particle size, and dispersibility, the effects of such fillers on the "apparent activation energy" (Ea) of cement has not been previously examined. In this article, cement Ea was calculated from isothermal calorimetry performed at different temperatures with two different types of fillers using a linear method as well as a modified ASTM C1074 method. The use of both types of nanoparticles increased the rate of cement hydration as well as accelerated the raction rate, due to heterogeneous nucleation effect, as previously demonstrated. Ea increased in the presence of nanosized fillers, demonstrating an increased temperature sensitivity of the filler-cement composites relative to ordinary cement. These results show that chemically inert nanoparticles behave fundamentally differently compared with supplementary cementitious materials such as fly ash and silica fume which instead decrease temperature sensitivity.

Author
A R Jaypalan Et Al
Origin
Georgia Inst Technology, Atlanta, Georgia, Usa
Journal Title
J Am Ceram Soc 97 5 2014 1534-1542 (Society of Glass Technology)
Sector
Special Glass
Class
S 4123

Request article (free for British Glass members)

Nanoparticles And Apparent Activation Energy Of Portland Cement
J Am Ceram Soc 97 5 2014 1534-1542 (Society of Glass Technology)
S 4123
Are you a member?
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
3 + 14 =
Solve this simple math problem and enter the result. E.g. for 1+3, enter 4.