Glass Manufacturing

Flat Glass Manufacture - the Float Process

The main flat glass products are for high quality glazing in homes, offices, hotels, shops, vehicles public buildings and glass for horticulture; wired glasses for fire resistance; patterned glass for privacy and decoration; and a wide range of glass for environmental control and energy conservation. Other uses for flat glass include toughened glass doors, suspended window assemblies, cladding for the exterior of buildings, mirrors and low-reflection glass for pictures and instrument dials.

The two manufacturing processes for producing flat glass in the UK are the float glass and rolled glass processes.

The Float Process

The float process, invented by Sir Alastair Pilkington in 1952, allows the manufacture of uniform, flat, glass in sizes previously unachievable. This process is used to produce clear, tinted and coated glass for buildings and vehicles.

There are around 260 float plants worldwide with a combined output of about 800,000 tonnes of glass a week. A float plant, which operates non-stop for between 11-15 years, makes around 6000 kilometres of glass a year in thicknesses of 0.4mm to 25mm and in widths up to 3 metres.

A float line can be nearly half a kilometre long. Raw materials enter at one end. From the other, plates of glass emerge, cut precisely to specification, at rates as high as 6,000 tonnes a week. In between lie six highly integrated stages.

Stage 1: Melting and refining

Fine-grained ingredients, closely controlled for quality, are mixed to make a batch, which flows into the furnace which is heated to 1500 oC.

Float today makes glass of near optical quality. Several processes - melting, refining, homogenising - take place simultaneously in the 2,000 tonnes of molten glass in the furnace. They occur in separate zones in a complex glass flow driven by high temperatures, as the diagram shows. It adds up to a continuous melting process, lasting as long as 50 hours, that delivers glass at 1,100oC, free from inclusions and bubbles, smoothly and continuously to the float bath. The melting process is key to glass quality; and compositions can be modified to change the properties of the finished product.

Stage 2: Float bath

Glass from the melter flows gently over a refractory spout on to the mirror-like surface of molten tin, starting at 1,100oC and leaving the float bath as a solid ribbon at 600oC. The principle of float glass is unchanged from the 1950s. But the product has changed dramatically: from a single equilibrium thickness of 6.8mm to a range from sub-millimetre to 25mm; from a ribbon frequently marred by inclusions, bubbles and striations to almost optical perfection. Float delivers what is known as fire finish, the lustre of new chinaware.

Stage 3: Coating

Coatings that make profound changes in optical properties can be applied by advanced high temperature technology to the cooling ribbon of glass. On-line chemical vapour deposition (CVD) of coatings is the most significant advance in the float process since it was invented. CVD can be used to lay down a variety of coatings, less than a micron thick, to reflect visible and infrared wavelengths, for instance. Multiple coatings can be deposited in the few seconds available as the glass ribbon flows beneath the coaters. Further development of the CVD process may well replace changes in composition as the principal way of varying the optical properties of float glass.

Stage 4: Annealing

Despite the tranquillity with which float glass is formed, considerable stresses are developed in the ribbon as it cools. Too much stress and the glass will break beneath the cutter. The picture shows stresses through the ribbon, revealed by polarised light. To relieve these stresses the ribbon undergoes heat-treatment in a long furnace known as a lehr. Temperatures are closely controlled both along and across the ribbon.

Stage 5: Inspection

The float process is renowned for making perfectly flat, flaw-free glass. But to ensure the highest quality, inspection takes place at every stage. Occasionally a bubble is not removed during refining, a sand grain refuses to melt, a tremor in the tin puts ripples into the glass ribbon. Automated on-line inspection does two things. It reveals process faults upstream that can be corrected. And it enables computers downstream to steer cutters round flaws. Inspection technology now allows more than 100 million measurements a second to be made across the ribbon, locating flaws the unaided eye would be unable to see. The data drives 'intelligent' cutters, further improving product quality to the customer.

Stage 6: Cutting to order

Diamond wheels trim off selvedge - stressed edges - and cut the ribbon to size dictated by computer. Float
glass is sold by the square metre. Computers translate customers' requirements into patterns of cuts designed
to minimise wastage.

The Rolled Glass Process

The rolling process is used for the manufacture of patterned flat glass and wired glass. A continuous stream of molten glass is poured between water-cooled rollers.

Patterned glass is made in a single pass process in which glass flows to the rollers at a temperature of about 1050 ºC. The bottom cast iron or stainless steel roller is engraved with the negative of the pattern; the top roller is smooth. Thickness is controlled by adjustment of the gap between the rollers. The ribbon leaves the rollers at about 850 ºC and is supported over a series of water-cooled steel rollers to the annealing lehr. After annealing the glass is cut to size.

Wired glass is made in a double pass process. The process uses two independently driven pairs of water cooled forming rollers each fed with a separate flow of molten glass from a common melting furnace. The first pair of rollers produces a continuous ribbon of glass, half the thickness of the end product. This is overlaid with a wire mesh. A second feed of glass, to give a ribbon the same thickness as the first, is then added and, with the wire mesh "sandwiched", the ribbon passes through the second pair of rollers, which form the final ribbon of wired glass. After annealing, the ribbon is cut by special cutting and snapping arrangements.

  • British Glass represents the interests of primary glass manufacturers and the glass supply-chain, from raw materials to retail and the end-consumer" credits="n/a" >
  • Learn about the different methods of manufacturing glass in our information section" credits="n/a" >
  • We provide relevant, impartial, and comprehensive advice and information - from leading experts across key legislative areas" credits="n/a" >

In this Section


About Glass



 
 

Many glass making terms have entered the language: 'Coddswallop': Hiram Codd invented the marble stoppered 'pop' bottle in the 1870s, and millions of the bottles were made, particularly in South Yorkshire. 'Wallop' was the name given to the cheap beer of the day, and beer drinkers dubbed the contents of the codd bottle 'a load of coddswallop'.


British Glass - Twitter

Big welcome to all our #environment and #energy committee members. Good to have you with us.

RT @BeatsonClark Industry offers guidance on #glass #recycling collections https://t.co/xAv2hlg4kQ https://t.co/plwEHuf3AE

RT @PilkingtonUK It’s #FireDoorSafetyWeek! Pledge your support to improve fire safety by clicking here: https://t.co/zs5okI7KMM

Say hi to our member @Talos_UK at #Glasstec2016! Have a go on their virtual reality headset at Hall 15 Stand F30. https://t.co/y9GV0DLIla